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Why bother

1. Sharing data efficiently (with “0-copy”) between libraries 
is easy within a single python process

2. It is not as easy to do so across processes/runtimes on a 
single machine

– Possible with plasma from Apache Arrow, a local 
object store using shared-memory

3. What about processing big data that cannot fit into a 
single machine, and involving different workloads?

– Use vineyard + K8s!

PyData is the de-facto standard for data analysis
There are lots of libraries for different workloads

(image credit: https://coiled.io/blog/pydata-dask/)

https://github.com/apache/arrow/blob/master/cpp/apidoc/tutorials/plasma.md


Big data analytical pipelines
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Big data analytical pipelines

Obversation：

• A typical big data application involves various kinds of workloads, and thus involves multiple 
dedicated systems for each workload

• These dedicated systems typically shares intermediate data with external file systems
• The workflow is often organized as a chain/DAG, and each individual task only gets invoked 

after their  prerequisite tasks are completed
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Big data analytical pipelines

Problem：

• Production-ready systems (Hive, Tensorflow, …) are hard to develop ...
• Sharing data with external file systems has huge I/O cost ...
• Applying cross-task optimization (pipelining) on tasks is challenging ...
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Big data analytical pipelines
Hardness in developing production-ready systems

Problem：
• Many dedicated systems (e.g., for graph computing) are developed these years, but only a 

few are production-ready. 

• Huge efforts are required just to implement

– I/O adaptors

– Data partition/chunking strategies

– Fault-tolerance mechanisms

– Scale in/out

– Data sink/source



Big data analytical pipelines
Huge I/O cost in workflows

Problem：
• Data could be polymorphic

– Non-relational data, such as tensors, dataframes and graphs/networks are becoming 
increasingly prevalent. 

– Tables and SQL may not be best way to store/exchange or process them. 

– Having the data transformed from/to "tables" back and forth between different systems 
could be a huge overhead.

• Saving/loading the data to/from the external storage requires lots of memory-copies and IO 
costs.



Big data analytical pipelines
Hardness of cross-job optimization

Problem：
• Tasks in workflows has no information about 

other tasks 

– The immediate data cannot be placed in a 
optimized fashion for the dependent tasks

• The data transfer from one task to another is a 
barrier

– Usually requires transformation of format and 
schema

– It is hard to do cross-task pipelining

Tasks in a typical workflow
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Vineyard

• Big data systems at production-ready quality are hard to develop

– Vineyard has an extensible design, that supports pluggable routines for I/O, data 
partition, scaling and fault-tolerance

• I/O cost in workflows is usually high

– Vineyard enables sharing in-memory immutable data in a zero-copy fashion

– I/O flows tasks in a workflow don’t require extra copy, and data can be accessed an 
in-memory data object.

• Cross-task optimization is challenging
– Data in memory can be directly shared between different systems
– Vineyard supported streams in shared memory, provides opportunity for pipelining 

between dedicated systems

Motivation



Vineyard

• Distributed in-memory object store for immutable data

• Zero-copy in-memory data sharing between different systems

• Out-of-the-box high-level abstraction for developing big data applications

• Local data access as native objects

• Drivers for data partitioning, I/O, checkpointing, migration,...

What is Vineyard



Vineyard

• A vineyard object consists of data payload 
and metadata
– Data payload is storing in shared memory

– Metadata is synced through the cluster with ETCD

• Vineyard daemon instances are accessed 
via IPC/RPC connections
– Data payload can only be accessed by IPC 

connections

• Pluggable drivers can provide certain 
functionalities to certain data formats

Architecture



Vineyard

• Object = Metadata + {Blob}

• Decouple the payload and semantics

• Share by memory mapping

• Zero-copy

• Share with the data structure abstractions

• Shares the data structure directly

• e.g., Tensors, DataFrames, Graphs

• Builders + Resolver

• Interpret the vineyard objects to 
engine’s native value type

Efficient Object Sharing across Engines



Vineyard

• Vineyard support distributed objects

• A global object consists of a set of chunks

• A client can accessing payload of local chunks

• and metadata (only) of remote chunks

• Metadata is synced using etcd

• Performance: only metadata of objects that are refered 
by a global object are synced to other instances

Distributed Objects Sharing



Vineyard

• Zero-copy sharing unlocks new opportunity

• The intermediate data sharing is not a 
barrier anymore

• Stream in Vineyard

• Stream over chunks of data structures

• e.g, tensor stream, dataframe stream

• Tasks can be pipelined using vineyard stream!

Pipelining between tasks in a workflow



Vineyard

• Engines usually are hard to be connected to 
production systems

• Integration with internal I/O

• Integration with other internal engines

• Vineyard serves as a bridge

• I/O is delegated to vineyard

• Engines consume data structures in 
vineyard directly

• Engine talks to other engines via shared 
intermediate objects in vineyard

Pluggable drivers



Vineyard on Kubernetes

The end-to-end big data task is deployed on Kubernetes

• Intermediate data is abstracted as a Kubernetes resource(CRDs), and is sharing with vineyard 
through memory mapping

• “Data” lives in memory, and the scheduler optimizes the data flow among cluster nodes

Vision: a new cloud-native paradigm for bigdata tasks
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Vineyard on Kubernetes

• Vineyard requires IPC communication between vineyard server pods and 
application pods for memory sharing

• The domain socket of vineyard server could be mounted on hostPath or 
PersistentVolumeClaim

• When users bundle vineyard and the workload to the same pod, the domain 
socket could be shared using an emptyDir

Memory Sharing on Kubernetes



Vineyard on Kubernetes

• Vineyard objects are abstracted as Kubernetes resources (i.e., CRDs)

• Each CRD contains the metadata of the represented vineyard object

• Location specs that describe which node an object is located are added to 
the CRDs of local objects

Vineyard objects as Kubernetes resources (CRDs)



Vineyard on Kubernetes

• Job and its required data cannot be 
always aligned

• The cluster environment is dynamic and 
constrained

• The requirements of different workloads 
is different

• The location information can be used to 
guide the scheduling process:

• A vineyard scheduler plugin!

• It still can be unaligned

• Auto migration in intiContainer

Scheduling on Kubernetes



Vineyard on Kubernetes

• Deployment
– Vineyard is deployed as a DaemonSet in Kubernetes cluster

• Deploy using Helm
– Vineyard can be easily deployed in Kubernetes cluster using Helm:

Deploying Vineyard on Kubernetes

helm repo add vineyard https://dl.bintray.com/libvineyard/charts/

helm install --namespace vineyard--name vineyard stable/vineyard



Roadmap
Onging

• Connecting to machine learning frameworks
– Integration with Tensorflow/Pytorch to share objects in vineyard to machine learning 

frameworks

• SDK in more languages
– Python
– Java
– Rust
– Go

• Integration with workflow engines 
– Integration with airflow: brings better immediate data sharing solution for workflows 

orchestrated by airflow



Roadmap
Further ahead

• Vineyard Operator for Kubernetes
– Better cluster management and monitor on Kubernetes cluster
– Better data-aware scheduler policy within the scheduler plugin

• Application-aware Far Memory
– Vineyard supports global object abstractions, e.g,, GlobalDataFrame
– Support for application-aware far memory will enables single-machine applications 

to leverage remote memory resources
– Better performance than raw RPC

• Storage hierarchy
– In-memory objects can be swapped out in certain cases
– Snapshot the objects and restore back to memory later benefits the end-to-end 

performance



Vineyard Community

• Vineyard is open source under the Apache-2.0 License

• Any contribution from the community are welcomed
– Issues about bugs and feature requests
– Pull requests for bugfix, enhancement, feature implementation and extensions
– Discussion about the installation, deployment, usage of vineyard

• We have comprehensive documentation for the underlying design and 
how to build application on vineyard

– https://v6d.io/

Opensource



加入我们
一起构建 Vineyard
https://v6d.io



THANKS


